Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

catena-Poly[[(pyridin-4-ol- κN)-silver(I)]- μ-pyridin-4-olato- $\left.\kappa^{2} N: O\right]$

Shan Gao,* Zhen-Zhong Lu, Li-Hua Huo and Hui Zhao

School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080,
People's Republic of China
Correspondence e-mail: shangao67@yahoo.com

Received 3 September 2004
Accepted 21 October 2004
Online 23 November 2004
The title complex, $\left[\mathrm{Ag}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NO}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO}\right)\right]_{n}$, consists of a polymeric neutral chain involving both a neutral pyridin-4-ol ligand and a deprotonated pyridin-4-olate monoanion. The Ag^{I} atom shows a T-shaped coordination geometry, defined by one N atom of the pyridin- 4 -ol and one O and one N atom of two independent pyridin-4-olate bridges; the $\mathrm{N}-\mathrm{Ag}-\mathrm{N}$ moiety is approximately linear. The polymeric chains are connected via strong $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and offset $\pi-\pi$ interactions into a three-dimensional network.

Comment

Hydroxypyridines (PyOH), including 2-, 3- and $4-\mathrm{PyOH}$, are widely used in pharmaceutical syntheses. Furthermore, they have attracted growing attention in the field of crystal engineering as good candidates for the construction of supramolecular systems. They are bifunctional ligands that are not only capable of binding to metal centres but can also form classical hydrogen bonds as both donors and acceptors (Breeze \& Wang, 1993; Kawata et al., 1997).

Another important feature of 2 - or $4-\mathrm{PyOH}$ is tautomerization to their pyridone isomers, viz. 2- or 4-pyridone. In the solid state, the pyridone is the observed tautomeric form for 2or 4-PyOH (Yang \& Craven, 1998; Wheeler \& Ammon, 1974; Trikoupis et al., 2002; Jones, 2001), whereas the 3 -isomer is a true hydroxypyridine (Flakus et al., 2003). For 4-PyOH, the equilibrium between the two tautomers is dominated by the presence of the keto form in polar solvents (Johnson, 1984; Gilchrist, 1985). Because the N atom is protonated, 4-PyOH would be expected to coordinate, if at all, through the O atom, which has only weak donor properties (Masse \& Le Fur, 1998). It is therefore predictably difficult to obtain complexes with the $4-\mathrm{PyOH}$ tautomer. As a contribution to this field, we have recently reported the structures of two mononuclear Co complexes and one dimeric Cu complex coordinated by the O atoms of 4-pyridone ligands, namely $\left.\left[\mathrm{CoCl}_{2} \text { (4-pyridone) }\right)_{2}\right]$, $\left[\mathrm{Co}\left(\mathrm{NO}_{3}\right)(4 \text {-pyridone })_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)$ and $\left[\mathrm{Cu}_{2}(\text { acetate })_{4}(4-\right.$ pyridone $)_{2}$], in which the Co atoms exhibit tetrahedral and octahedral geometries, while the Cu atom displays a square-
pyramidal coordination environment (Gao et al., 2004; Lu, Gao, Huo, Zhang et al., 2004; Lu, Gao, Huo, Zhao \& Zhao, 2004).

In order to gain further insight into the metal-binding modes of the 4-PyOH ligand, we have now introduced the Ag^{I} ion into the coordination system of the $4-\mathrm{PyOH}$ ligand. Our most unexpected discovery, reported here, is that the Ag^{I} atom favours coordination via the N atom and effectively reverses the usual tautomerization to the 4-pyridone tautomer, producing the title novel coordination polymer, $[\mathrm{Ag}(\mu$-pyri-dine-4-olate- $\left.\left.\kappa^{2} N, O\right)(4-\mathrm{PyOH})\right]_{n}$, (I), based on both neutral and deprotonated forms of the $4-\mathrm{PyOH}$ tautomer. To the best of our knowledge, (I) is the first example of a metal complex containing the $4-\mathrm{PyOH}$ tautomer in either form.

(I)

(a)

(b)

(c)

The crystal structure of complex (I) consists of polymeric neutral $\left[\mathrm{Ag}\left(\mu \text {-pyridine-4-olate- } \kappa^{2} N, O\right)(4-\mathrm{PyOH})\right]_{n}$ chains, in which the Ag^{I} atoms are bridged sequentially by N, O-bidentate pyridine-4-olate ligands (Figs. 1 and 2).

All the 4-PyOH ligands in (I) are coordinated to the Ag^{I} atoms in the $4-\mathrm{PyOH}$ tautomer form, or its deprotonated counterpart, as evidenced by the $\mathrm{C}-\mathrm{O}[1.300$ (3) and 1.318 (3) \AA] and $\mathrm{C}-\mathrm{N}[1.340$ (3) -1.349 (3) \AA] bond lengths. A similar bond-length pattern is observed in free $3-\mathrm{PyOH}$ [two independent molecules; $\mathrm{C}-\mathrm{O}=1.3462$ and 1.3466 (12) \AA, and $\mathrm{C}-\mathrm{N}=1.3361$ (14)-1.3403 (13) \AA; Flakus et al., 2003]. In the

Figure 1
The coordination environment of the Ag^{I} atom in (I), showing the atomnumbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (i) $1-x, y-\frac{1}{2}, \frac{3}{2}-z$.]
structure of free 4-pyridone (Jones, 2001), the $\mathrm{C}-\mathrm{O}$ bond lengths $[1.258$ (2)-1.278 (2) A] are significantly shorter than in (I), while the $\mathrm{C}-\mathrm{N}$ bond distances $[1.341$ (3) -1.355 (3) $\AA]$ are slightly longer.

The C6-C7 and C9-C10 bond lengths [1.368 (4) and 1.362 (3) \AA] are similar to the values observed in the terminal 4-PyOH ligand $[1.375$ (3) and 1.366 (4) \AA i . The $\mathrm{O} 2-\mathrm{C} 8$ bond length $[1.300$ (3) \AA] is shorter than the $\mathrm{O} 1-\mathrm{C} 3$ bond length [1.318 (3) \AA], again indicating that the deprotonated $4-\mathrm{PyOH}$ ligand assumes the pyridine-4-olate form. However, there is still a slight 'pyridone-like' pattern to the $\mathrm{C}-\mathrm{C}$ bond lengths, albeit much less marked than in 4-pyridone, with averages of 1.362 and $1.426 \AA$.

Fig. 1 shows the coordination environment of the Ag^{I} centre of (I). The main interatomic bond distances and angles are listed in Table 1. Each Ag^{I} atom shows a T-shaped coordination geometry, involving two N atoms, one each from a neutral terminal 4-PyOH ligand and a deprotonated pyridine-4-olate bridging ligand $\left[\mathrm{N} 2-\mathrm{Ag} 1-\mathrm{N} 1=174.12(8)^{\circ}\right]$, and one deprotonated hydroxyl O atom of a pyridine-4-olate ligand in a neighbouring asymmetric unit. The $\mathrm{N} 1-\mathrm{Ag} 1-\mathrm{O} 2$ and $\mathrm{N} 2-$ $\mathrm{Ag} 1-\mathrm{O} 2$ bond angles are 91.5 (2) and 92.9 (2) ${ }^{\circ}$, respectively. The $\mathrm{Ag}-\mathrm{N}$ bond length is as expected [mean 2.130 (2) \AA; Cai et al., 2001], while the $\mathrm{Ag}-\mathrm{O}$ bond [2.743 (2) \AA] is longer than common $\mathrm{Ag}-\mathrm{O}$ distances reported for Ag^{I} complexes with a T-shaped geometry, which range from $2.235(4) \AA$ in $\left[\mathrm{Ag}_{2}\left(\mathrm{PPh}_{3}\right)_{4}\left(\mathrm{SO}_{4}\right)\right] \cdot 2 \mathrm{H}_{2} \mathrm{O} \quad$ (Bowmaker et al., 2001) to $2.613(4) \AA$ in $[\mathrm{Ag}(\mathrm{ODOQ})]_{n}\left(\mathrm{ClO}_{4}\right)_{n}\left[\mathrm{ODOQ}=O, O^{\prime}-\mathrm{bis}(8-\right.$ quinolyl)-1,8-dioxaoctane] (Cai et al., 2001), but shorter than the value observed in the complex $\left[\mathrm{Ag}_{2} \mathrm{CA}\right](\mathrm{CA}=$ cyanuric acid; 2.76 Á; Rao et al., 2000).

As a consequence of the pyridine-4-olate bridges, adjacent Ag^{I} atoms are linked into a one-dimensional zigzag chain structure, which has terminal branches (the neutral hydroxypyridines). The intrachain $\mathrm{Ag} \cdots \mathrm{Ag}$ separation across the pyridine-4-olate ligand is 7.672 (3) \AA. The polymeric chains are parallel to the b axis of the unit cell and show a corrugated arrangement, with an $\mathrm{Ag} \cdots \mathrm{Ag} \cdots \mathrm{Ag}$ angle of $85.40(4)^{\circ}$ between three successive Ag^{I} ions along the chain (Fig. 2).

The aromatic rings of the terminal and bridging ligands (those involving atoms N 1 and O 2 , respectively) are almost coplanar, with an interplanar angle of $1.26(3)^{\circ}$, while the mean planes of adjacent pyridine-4-olate bridges are almost

Figure 2

A perspective view of the chain and layer structure of (I). The weak Ag $\cdots \mathrm{O}[3.265$ (3) Å] contacts are denoted by dashed lines and the H atoms of the aromatic rings have been omitted.
perpendicular to each other $\left[84.95(6)^{\circ}\right]$. There are offset face-to-face interactions [(b) in the scheme], with a 'head-to-tail' arrangement between the terminal 4-PyOH ligands and a centre-to-centre separation of 3.474 (3) A (symmetry code: $2-x, 1-y, 1-z$). Such strong facial interactions may be considered as a cause of the weak $\mathrm{Ag} \cdots \mathrm{O}_{\mathrm{OH}}$ interactions between adjacent chains [3.265 (3) \AA]. These weak $\mathrm{Ag} \cdots \mathrm{O}_{\mathrm{OH}}$ and the strong $\pi-\pi$ interactions constitute small rectangular grids $[\mathrm{Ag} \cdots \mathrm{Ag}=7.407$ (3) \AA] between adjacent chains and form a layer structure parallel to the $b c$ plane (Fig. 2). Each layer includes the one-dimensional hydrogen-bonded chains via strong ionic $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}^{-}$interactions between the O atoms of the terminal $4-\mathrm{PyOH}$ ligand and the anionic pyridine-4olate bridge $[\mathrm{O} \cdots \mathrm{O}=2.476(3) \AA$. A . The shortest $\mathrm{Ag} \cdots \mathrm{Ag}$ distance is 3.835 (3) \AA, between adjacent hydrogen-bonded chains.

The layers are further linked into a three-dimensional supramolecular framework (Fig. 3) via another offset $\pi-\pi$ interaction [(c) in the scheme] in a 'head-to-head' fashion, between the terminal $4-\mathrm{PyOH}$ ligand and the monoanionic pyridine-4-olate bridge, with a centre-to-centre separation of 3.678 (3) \AA (symmetry code: $1-x, 1-y, 1-z$), which is significantly longer than the value observed in the head-to-tail arrangement. This is explained by the fact that the head-to-tail arrangement may be energetically more favourable than the head-to-head orientation, due to the more effective charge separation, thus reducing Coulombic repulsion between the cationic centres. The facial interactions between the aromatic groups of the $4-\mathrm{PyOH}$ ligands seem to play a critical role in the self-assembly process.

Experimental

The title complex, (I), was synthesized by the addition of AgNO_{3} $(2 \mathrm{mmol})$ to an ethanol solution of 4-hydroxypyridine (6 mmol). The mixed solution was protected from light and allowed to evaporate

Figure 3
A diagram of the three-dimensional supramolecular framework of (I), showing the two types of $\pi-\pi$ pairs (solid lines for head-to-head mode; the head-to-tail mode is not shown) and hydrogen-bonding interactions (short dashed lines). The weak Ag. $\cdot \mathrm{O}[3.265$ (3) Å] contacts are denoted by long dashed lines.
slowly at room temperature. Colourless prismatic crystals of (I) were isolated after about 15 d . Analysis calculated for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{AgN}_{2} \mathrm{O}_{2}$: C 40.43, H 3.05, N 9.43\%; found: C 40.20, H 3.11, N 9.47\%.

Crystal data

$\left[\mathrm{Ag}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NO}\right)\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NO}\right)\right]$
$M_{r}=297.06$
Monoclinic, $P 2_{1} / c$
$a=9.1673(18) \AA$
$b=10.401(2) \AA$
$c=11.026(2) \AA$
$\beta=111.81(3)^{\circ} \AA$
$V=976.1(4) \AA^{3}$
$Z=4$

$$
D_{x}=2.022 \mathrm{Mg} \mathrm{~m}^{-3}
$$

$M_{r}=297.06$
Monoclinic, $P 2_{1} / c$
$a=9.1673$ (18) A
$b=10.401$ (2) A
$c=11.026$ (2) A
$V=976.1(4) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
Cell parameters from 8987 reflections
$\theta=3.1-27.5^{\circ}$
$\mu=2.04 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.37 \times 0.24 \times 0.15 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID areadetector diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\text {min }}=0.519, T_{\text {max }}=0.749$
9387 measured reflections

Refinement

Refinement on F^{2}
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0316 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.025$
$w R\left(F^{2}\right)=0.056$
$S=1.06$
2234 reflections
139 parameters
2234 independent reflections 1929 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.024$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-11 \rightarrow 11$
$k=-11 \rightarrow 13$
$l=-14 \rightarrow 14$

H atoms treated by a mixture of independent and constrained refinement

The H atoms of the hydroxy groups were located in a difference map and refined with $\mathrm{O}-\mathrm{H}$ distance restraints of 0.85 (1) \AA, and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O}) . \mathrm{H}$ atoms bound to C atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93 \AA$, and refined using a ridingmodel approximation, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China (grant No. 20101003), Heilongjiang Province Natural Science Foundation (grant No. B0007), the Scientific Fund of Remarkable Teachers of Heilongjiang Province (grant No. 1054 G036) and Heilongjiang University for supporting this work.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1667). Services for accessing these data are described at the back of the journal.

References

Bowmaker, G. A., Hanna, J. V., Rickar, C. E. F. \& Lipton, A. S. (2001). J. Chem. Soc. Dalton Trans. pp. 20-28.
Breeze, S. R. \& Wang, S. (1993). Inorg. Chem. 32, 5981-5989.
Cai, Y.-P., Zhang, H.-X., Xu, A.-W., Su, C.-Y., Chen, C.-L., Liu, H.-Q., Zhang, L. \& Kang, B.-S. (2001). J. Chem. Soc. Dalton Trans. pp. 2429-2434.

Flakus, H. T., Tyl, A. \& Jones, P. G. (2003). Vib. Spectrosc. 33, 163-175.
Gao, S., Lu, Z.-Z., Huo, L.-H., Zhao, H. \& Zhao, J.-G. (2004). Acta Cryst. E60, m609-m610.
Gilchrist, T. L. (1985). Heterocyclic Chemistry, pp. 290-296. London: Pitman. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Johnson, C. D. (1984). Comprehensive Heterocyclic Chemistry, edited by A. R. Katritsky \& C. W. Rees, pp. 148-157. New York: Pergamon.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Jones, P. G. (2001). Acta Cryst. C57, 880-882.
Kawata, S., Breeze, S. R., Wang, S., Greedan, J. E. \& Raju, N. P. (1997). J. Chem. Soc. Chem. Commun. pp. 717-718.
Lu, Z.-Z., Gao, S., Huo, L.-H., Zhang, X., Zhao, H. \& Zhao, J.-G. (2004). Acta Cryst. E60, m811-m813.
Lu, Z.-Z., Gao, S., Huo, L.-H., Zhao, H. \& Zhao, J.-G. (2004). Acta Cryst. E60, m976-m978.
Masse, R. \& Le Fur, Y. (1998). Z. Kristallogr. New Cryst. Struct. 213, 114.
Rao, C. N. R., Ranganathan, A., Pedireddi, V. R. \& Raju, A. R. (2000). Chem. Commun. pp. 39-40.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Trikoupis, M. A., Gerbaux, P., Lavorato, D. J., Flammang, R. \& Terlouw, J. K. (2002). Int. J. Mass Spectrom. 217, 1-22.

Wheeler, G. L. \& Ammon, H. L. (1974). Acta Cryst. B30, 680-687.
Yang, H. W. \& Craven, B. M. (1998). Acta Cryst. B54, 912-920.

